1. **Answer any four of the following:**

(a) **Define**

(i) Feasible solution to LPP.

(ii) Basic feasible solution to LPP.

(iii) Convex set.

Show that the set of all feasible solution to a LPP (if a feasible solution exists) is a convex set.

(b) If \(\{a_n\} \) is a non-increasing sequence of positive numbers and if \(\sum_{n=0}^{\infty} 2^n a_n \) converges, then show that \(\sum_{n=0}^{\infty} a_n \) converges.

(c) Determine components of velocity and acceleration of a moving particle along radial and transverse directions.

(d) Write a programme in C/recent computer language to evaluate the roots of a quadratic equation \(ax^2 + bx + c = 0 \) requesting the user to input the values of \(a, b, c \) and to output real roots root1 and root2.

(e) If \(\{f_n\} \) is a sequence of continuous real valued functions on the metric space \(X \) that converges uniformly to \(f \) on \(X \), then show that \(f \) is also continuous on \(X \).
SECTION - A

2. (a) Show that every group is isomorphic to a subgroup of a permutation group $A(S)$ for some appropriate S.
State the name of this theorem.
(b) If $\{v_1, v_2, \ldots, v_n\}$ is a basis of a vector space V and if $\{w_1, w_2, \ldots, w_m\}$ is linearly independent in V, then show that $m \leq n$.

3. (a) Define (i) Euclidean Domain.
(ii) Principal Ideal Domain (PID).
Show that every Euclidean Domain is PID.
(b) State Cayley Hamilton theorem and using it find inverse of the matrix A if it exists.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 8 \end{pmatrix}$$

SECTION - B

4. (a) If f is a real-valued continuous function on a compact metric space X, then show that $f(X)$, range of f, is compact and f attains a maximum and minimum at points of X.
(b) Define absolute convergence and conditional convergence for improper integrals
 of the type $\int_{a}^{\infty} f(x) \, dx$ for continuous function $f(x)$.
 Show that $\int_{a}^{\infty} \frac{\sin x}{x} \, dx$ is convergent but not absolutely.

5. (a) Define differentiability of a function of two variables at a point.
Let $f : E \to \mathbb{R}$ be defined on a neighbourhood E of $(a, b) \in \mathbb{R} \times \mathbb{R}$ such that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are continuous at (a, b). Show that f is differentiable at (a, b). Is the converse of this is true? Justify your answer.
MNS

(b) Define a Riemann integral for a bounded real function on \([a, b]\).
Show that a bounded real function \(f\) is Riemann integrable on \([a, b]\) if and only if for every \(\varepsilon > 0\), there is a partition \(P\) of \([a, b]\) such that \(U(P, f) - L(P, f) < \varepsilon\).

SECTION - C

6. (a) Show that the general equation \(ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0\) of second degree represents a conic section.
(b) Define (i) Divergence of a vector point function.
 (ii) Curl of a vector point function.
(c) Show that \(\vec{b} \cdot \nabla(\vec{a} \cdot \nabla) = \frac{3(\vec{a} \cdot \vec{r})(\vec{b} \cdot \vec{r})}{r^3} - \frac{\vec{a} \cdot \vec{b}}{r^3}\)
(d) Show that \(\text{curl}(\vec{r} \times \vec{a}) = -2\vec{a}\).

7. (a) (i) Find the length of perpendicular from a point \((x_1, y_1, z_1)\) to the plane \(ax + by + cz = d\).
 (ii) Find equation of a sphere for which the circle \(x^2 + y^2 + z^2 + 2y - 2z + 2 = 0\), \(2x + 3y + 4z = 8\) is a great circle.
(b) Verify Gauss divergence theorem for \(\vec{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k\) taken over the rectangular parallelepiped \(0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c\).

SECTION - D

8. (a) (i) Explain when \(M(x, y) + N(x, y)y' = 0\) is said to be exact in some rectangle \(R\).
 (ii) Define integrating factor of the equation \(M(x, y)dx + N(x, y)dy = 0\), where \(M\) and \(N\) have continuous partial derivatives in some rectangle \(R\).
 Show that the equation \(M(x, y) + N(x, y)y' = 0\) is exact in \(R\) if and only if \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\) in \(R\).
(b) Find the inverse of the coefficient matrix of the system.

\[
\begin{bmatrix}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
1 \\
6 \\
4
\end{bmatrix}
\]

by Gauss - Jordan method with partial pivoting and hence solve the system.

P.T.O.
9. (a) If \(\phi_1 \) is a solution of \(y'' + a_1(x)y' + a_2(x)y = 0 \) on an interval \(I \), and \(\phi_1(x) \neq 0 \) on \(I \), describe a method to determine a second linearly independent solution \(\phi_2 \) of this differential equation on \(I \).

Hence or otherwise find second linearly independent solution of

\[y'' - 4xy' + (4x^2 - 2)y = 0 \]

after verifying that \(\phi_1(x) = e^{x^2} \) is a solution of this differential equation.

(b) Describe Trapezoidal and Simpson \(\frac{1}{3} \) rule to find \(\int_a^b f(x)dx \) numerically.

Find an approximate value of \(\int_0^1 \frac{dx}{1 + x} \) by using Trapezoidal and Simpson \(\frac{1}{3} \) rule and compare with exact solution.